Эскорт-услуги в Москве от Queens Palace


GOUSPO студенческий портал!

форум, учебники, лекции, и многое другое

ЦП теорема, ЗБЧ

Центральная предельная теорема, закон больших чисел

План:

1. Понятие центральной предельной теоремы (теорема Ляпунова)

2. Закон больших чисел, вероятность и частота (теоремы Чебышева и Бернулли)

1. Понятие центральной предельной теоремы.

Нормальное распределение вероятностей имеет в теории вероят­ностей большое значение. Нормальному закону подчиняется вероят­ность при стрельбе по цели, в измерениях и т. п. В частности, оказывается, что закон распределения суммы достаточно большого чис­ла независимых случайных величин с произвольными законами распределения близок к нормальному распределению. Этот факт, называемый центральной предельной теоремой или  теоремой Ляпунова[1].

Известно, что нормально распределенные случай­ные величины широко распространены на практике. Чем это объясняется? Ответ на этот вопрос был дан А. М. Ляпуновым

Централь­ная предельная теорема. Если случайная величина X пред­ставляет, собой сумму очень большого числа взаимно неза­висимых случайных величин, влияние каждой из которых на всю сумму ничтожно мало, то X имеет распределение, близкое к нормальному распределению.

Пример. Пусть производится измерение некоторой физической величины. Любое измерение дает лишь приближенное значение изме­ряемой величины, так как на результат измерения влияют очень многие независимые случайные факторы (температура, колебания прибора, влажность и др.). Каждый из этих факторов порождает ничтожную частную ошибку. Однако, поскольку число этих факторов очень велико, их совокупное действие порождает уже заметную «суммар­ную ошибку».

Рассматривая суммарную ошибку как сумму очень большого числа взаимно независимых частных ошибок, мы вправе заключить, что суммарная ошибка имеет распределение, близкое к нормальному распределению. Опыт подтверждает справедливость такого заключения.

Рассмотрим условия, при которых выполняется  централь­ная предельная теорема

Пусть:

Х1, Х2,  ,Хn – последовательность независимых случайных величин,

M1), M(Х2), ,Mn) конечные математические ожидания этих величин, соответственно равные  М(Xk)= ak

D1), D(Х2), , Dn) конечные дисперсии  их, соответственно равные  D(X k)=bk2

Введем обозначения: S= Х12 + +Хn;

A k= Х12 + +Хn=;              B2= D1)+ D(Х2)+ + Dn) =

Запишем  функцию распределения нормированной суммы:

Fn(x) =

Говорят, что к последовательности Х1, Х2,  ,Хn применима централь­ная предельная теорема, если при любом x функция распределения нормированной суммы при n ® ¥ стремится к нормальной функции распределения:

=

Замечание. Полученная функция отличается от интегральной приближенной функции Лапласа только лишь  пределами интегрирования, где находятся  от 0 до x

В частности если все случайные величины Х1, Х2,  ,Хn одинаково распределены и  дисперсии всех этих величин  конечные и не равные нулю, то к этой последовательности применима централь­ная предельная теорема.

2. Закон больших чисел, вероятность и частота.

Как известно, нельзя заранее уверенно пред­видеть, какое из возможных значений примет случайная величина в итоге испытания; это зависит от многих слу­чайных причин, учесть которые невозможно. Казалось бы, поскольку о каждой случайной величине мы распо­лагаем в этом смысле весьма скромными сведениями, то вряд ли можно установить закономерности поведения и суммы достаточно большого числа случайных величин. На самом деле это не так. Оказывается, что при некото­рых сравнительно широких условиях суммарное поведе­ние достаточно большого числа случайных величин почти утрачивает случайный характер и становится законо­мерным.

Для практики очень важно знание условий, при вы­полнении которых совокупное действие очень многих слу­чайных причин приводит к результату, почти не завися­щему от случая, так как позволяет предвидеть ход явле­ний. Эти условия и указываются в теоремах, носящих общее название закона больших чисел. К ним относятся теоремы Чебышева и Бернулли (имеются и другие теоремы, которые здесь не рассматриваются).

Теорема Чебышева является наиболее общим законом больших чисел, теорема Бернулли- простейшим.

2.1.  Неравенство Чебышева

Неравенство Чебышева справедливо для дискрет­ных и непрерывных случайных величин. Для простоты ограничимся рассмотрением этого неравенства для диск­ретных величин.

Xi x1 x2 xn
Pi p1 p2 pn

Рассмотрим дискретную случайную величину X, задан­ную таблицей распределения:

Поставим перед собой задачу оценить вероятность того, что отклонение случайной величины от ее математического ожидания не превышает по абсолютной величине поло­жительного числа ε

Если ε достаточно мало, то мы оце­ним, таким образом, вероятность того, что X примет значения, достаточно близкие к своему математическому ожиданию. Чебышев П.Л. доказал неравенство, позволяю­щее дать интересующую нас оценку.

Лемма Чебышева. Дана случайная величина X, принимающая только неотрицательные значения с математическим ожиданием M(X). Для любого числа α>0 имеет место выражение:

Неравенство Чебышева. Вероятность того, что отклонение случайной величины X от ее математического ожидания по абсолютной величине меньше положитель­ного числа ε, не меньше, чем  1 – D(X) / ε 2:

Р ( | X-M (X) | <  ε ) ³  1 D (Х) / ε 2.

Замечание. Неравенство Чебышева имеет для практики огра­ниченное значение, поскольку часто дает грубую, а иногда и три­виальную (не представляющую интереса) оценку.

Теоретическое же значение неравенства Чебышева весьма велико. Ниже мы воспользуемся этим неравенством для вывода теоремы Чебышева.

2.2.  Теорема Чебышева

Если Х1, Х2,  ,Хn..- попарно независимые случайные величины, причем диспер­сии их равномерно ограничены (не превышают постоян­ного числа С), то, как бы мало ни было положительное число ε, вероятность неравенства

÷ (Х12 + +Хn ) / n  -   (M(Х1)+M(Х2)+ +M(Хn ))/n |  < ε

будет как угодно близка к единице, если число случайных величин достаточно велико.

Другими словами,  в условиях теоремы

P (÷ (Х12 + +Хn ) / n  -   (M(Х1)+M(Х2)+ +M(Хn ))/n |  < ε)=1.

Теорема Чебышева утверждает:

1. Рассматривается достаточно большое число незави­симых случайных величин, имеющих ограниченные ди­сперсии,

2. Почти достоверным можно считать событие, состоящее в том, что отклонение среднего арифметического случайных величин от среднего арифметического их ма­тематических ожиданий будет по абсолютной величине сколь угодно малым.

Формулируя теорему Чебышева, мы предпола­гали, что случайные величины имеют различные матема­тические ожидания. На практике часто бывает, что слу­чайные величины имеют одно и то же математическое ожидание. Очевидно, что если вновь допустить, что диспер­сии этих величин ограничены, то к ним будет применима теорема Чебышева.

Обозначим математическое ожидание каждой из слу­чайных величин через а;

В рассматриваемом случае среднее арифметическое математических ожиданий, как легко видеть, также равно а.

Можно сформулировать тео­рему Чебышева для рассматриваемого частного случая.

Если Х1, Х2,  ,Хn..- попарно независимые случай­ные величины, имеющие одно и то же математическое ожидание а, и если дисперсии этих величин равномерно ограничены, то, как бы мало ни было число ε > О, ве­роятность неравенства

÷ (Х12 + +Хn ) / n   a |  < ε

будет  как угодно  близка к единице, если число случай­ных величин достаточно велико.

Другими словами,  в условиях теоремы

P (÷ (Х12 + +Хn ) / n a | < ε) = 1.

2.3. Сущность теоремы Чебышева

Хотя от­дельные независимые случайные величины могут прини­мать значения, далекие от своих математических ожиданий, среднее арифметическое достаточно большого числа случай­ных величин с большой вероятностью принимает значе­ния, близкие к определенному постоянному числу, а именно к числу

(М (Xj) + М (Х2) + + М (Х„))/п или к числу а в частном случае .

Иными словами, отдельные случайные величины могут иметь значительный разброс, а их среднее арифметическое рассеянно мало.

Таким образом, нельзя уверенно предсказать, какое возможное значение примет каждая из случайных вели­чин, но можно предвидеть, какое значение примет их среднее арифметическое.

Итак, среднее арифметическое достаточно большого числа независимых случайных величин (дисперсии которых равномерно ограничены) утрачивает характер случайной, величины.

Объясняется это тем, что отклонения каждой из величин от своих математических ожиданий могут быть как положительными, так и отрицательными, а в среднем арифметическом они взаимно погашаются.

Теорема Чебышева справедлива не только для дискрет­ных, но и для непрерывных случайных величин; она является примером, подтверждающим справедли­вость учения о связи между случайностью и  необходимостью.

2.4.   Значение теоремы Чебышева для практики

Приведем примеры применения теоремы Чебышева к решению практических задач.

Обычно для измерения некоторой физической величины производят несколько измерений и их среднее арифме­тическое принимают в качестве искомого размера. При каких условиях этот способ измерения можно считать правильным? Ответ на этот вопрос дает теорема Чебы­шева (ее частный случай).

Действительно, рассмотрим результаты каждого из­мерения как случайные величины

Х1, Х2,  ,Хn

К. этим величинам можно применить теорему Чебышева, если:

1) Они попарно независимы.

2) имеют одно и то же ма­тематическое ожидание,

3) дисперсии их равномерно огра­ничены.

Первое требование выполняется, если результат каж­дого измерения не зависит от результатов остальных.

Второе требование выполняется, если измерения произ­ведены без систематических (одного знака) ошибок. В этом случае математические ожидания всех случайных величин одинаковы и равны истинному размеру а.

Третье требо­вание выполняется, если прибор обеспечивает определен­ную точность измерений. Хотя при этом результаты отдельных измерений различны, но рассеяние их огра­ничено.

Если все указанные требования выполнены, мы вправе применить к результатам измерений теорему Чебышева: при достаточно большом п вероятность неравенства

| (Х1 + Хя++Х„)/п -  а |< ε как угодно близка к единице.

Другими словами, при достаточно большом числе измерений почти достоверно, что их среднее арифметическое как угодно мало отли­чается от истинного значения измеряемой величины.

Теорема Чебышева указывает условия, при ко­торых описанный способ измерения может быть приме­нен. Однако ошибочно думать, что, увеличивая число измерений, можно достичь сколь угодно большой точ­ности. Дело в том, что сам прибор дает показания лишь с точностью ± α ,  поэтому каждый из результатов изме­рений, а следовательно, и их среднее арифметическое будут получены лишь с точностью, не превышающей точности прибора.

На теореме Чебышева основан широко применяемый в статистике выборочный метод, суть которого состоит в том, что по сравнительно небольшой случайной выборке судят о всей совокупности (генеральной совокупности) исследуемых объектов.

Например, о качестве кипы хлопка заключают по небольшому пучку, состоящему из волокон, наудачу отобранных из разных мест кипы. Хотя число волокон в пучке значительно меньше, чем в кипе, сам пучок содержит достаточно большое количество волокон, исчисляемое сотнями.

В качестве другого примера можно указать на опре­деление качества зерна по небольшой его пробе. И в этом случае число наудачу отобранных зерен мало сравни­тельно со всей массой зерна, но само по себе оно доста­точно велико.

Уже из приведенных примеров можно заключить, что для практики теорема Чебышева имеет неоценимое значение.

2.5. Теорема Бернулли

Производится п независимых испытаний (не событий, а испытаний). В  каждом из них  вероятность появления события A равна р.

Возникает вопрос, какова примерно будет относительная частота появлений события? На этот вопрос отвечает теорема, доказанная  Бернулли[2] которая полу­чила название закона больших чисел и положила начало теории вероятностей как науке.

Теорема Бернулли. Если в каждом из п независимых испытаний вероятность р появления события А постоянна, то как угодно близка к единице вероятность того, что отклонение относительной частоты от вероятности р по абсолютной величине будет сколь угодно малым, если число испытаний достаточно велико.

Другими словами, если ε >0 сколь угодно малое число, то при соблюдении условий теоремы имеет место равенство

Р( | m / п- р| < ε)= 1

Замечание. Было бы неправильным на основании теоремы Бернулли сделать вывод, что с ростом числа испытаний относитель­ная частота неуклонно стремится к вероятности р; другими словами, из теоремы Бернулли не вытекает равенство  (т/п) = р,

В теореме речь идет лишь о вероятности того, что при достаточно большом числе испытаний относительная частота будет, как угодно мало отличаться от постоянной вероятности появления события в каж­дом испытании.

Задание 7-1.

1. Оценить вероятность того, что при 3600 бросаниях кости число появления 6 очков будет не меньше 900.

Решение. Пусть x – число появления 6 очков при 3600 бросаниях монеты. Вероятность появления 6 очков при одном бросании равна p=1/6, тогда M(x)=3600·1/6=600. Воспользуемся неравенством (леммой) Чебышева   при заданном α = 900

=P(x ³  900) £ 600 / 900 =2 / 3

Ответ 2 / 3.

2. Проведено 1000 независимых испытаний, p=0,8. Найти вероятность числа наступлений события A в этих испытаниях отклонится от своего математического ожидания по модулю меньше, чем 50.

Решение. x –число наступлений события A  в n – 1000 испытаниях.

М(Х)= 1000·0,8=800. D(x)=100·0,8·0,2=160

Воспользуемся неравенством Чебышева при заданном  ε = 50

Р ( | х-M (X) | <  ε ) ³  1 D (х) / ε 2

Р ( | х-800 | <  50 ) ³  1 160 / 50 2 = 1-160 / 2500 = 0,936.

Ответ. 0,936

3. Используя неравенство Чебышева, оценить вероятность того, что |Х -М(Х)| < 0,1, если D (X) = 0,001. Ответ Р³0,9.

4. Дано:   Р(|Х—М(Х)\ < ε) ³ 0,9;    D (X)= 0,004.    Используя неравенство Чебышева, найти ε. Ответ. 0,2.

Контрольные вопросы и задания

1. Назначение центральной предельной теоремы

2. Условия применимости теоремы Ляпунова.

3. Отличие леммы и теоремы Чебышева.

4. Условия применимости теоремы Чебышева.

5. Условия применимости теоремы Бернулли (закона больших чисел)

.